Differentiating sine / cosine

The sine / cosine functions differentiate using standard sets of rules:

$$
\begin{array}{ll}
\frac{d}{d t}(\sin t)=\cos t & \frac{d}{d t}(\cos t)=-\sin t \\
\frac{d}{d t}(-\sin t)=-\cos t & \frac{d}{d t}(-\cos t)=\sin t
\end{array}
$$

Slightly more complicated is $\sin (\omega t)$ or $\sin (\omega t+\phi)$ etc. In these cases the expression within the sine or cosine is itself differentiated w.r.t the variable " t ", in addition to the sin or cos function itself: these are then multiplied together.

$$
\frac{d}{d t}(A \sin \omega t)=\omega A \cos \omega t \quad \text { and } \quad \frac{d}{d t}(A \cos \omega t)=-\omega A \sin \omega t \quad \text { since } \frac{d}{d t}(\omega t)=\omega
$$

For a further example, if the sin / cos function is now a more complicated function of t say, notice how we still differentiate it (as well as the sin / cos itself) ; e.g. for sin $\left(k t^{2}\right)$ and $\cos \left(k t^{3}\right)$ etc.

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\sin \left(k t^{2}\right)\right]=2 k t \cdot \cos \left(k t^{2}\right) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{dt}}\left[\cos \left(k t^{3}\right)\right]=-3 k t^{2} \cdot \sin k t^{3}
$$

If the function has two variables in it, (as with some of the functions in our lecture course, e.g. $y=y_{0} \sin (\omega t-k x)$), then the differentiation works in the same way;

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{y})=\omega \mathrm{y}_{0} \cos (\omega \mathrm{t}-\mathrm{kx}) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{y})=-k \mathrm{y}_{0} \cos (\omega \mathrm{t}-\mathrm{kx})
$$

In general:

$$
\frac{d}{d x}[f(g(x))]=\frac{d f}{d x} \times \frac{d g}{d x}
$$

This means we differentiate the outside function, leave the argument of the outside function alone, and then multiply by the derivative of the inside function.
For example;

$$
\frac{d}{d x}\left[\cos \left(3 x^{2}+1\right)\right]=\frac{d f}{d x} \times \frac{d g}{d x}=-\sin \left(3 x^{2}+1\right) \times 6 x=-6 x \cdot \sin \left(3 x^{2}+1\right)
$$

Practice Problems:

Complete the following (see PV or your tutor for solutions):

$$
\frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{~A} \omega \sin (\omega \mathrm{t})]=
$$

$$
\frac{\mathrm{d}}{\mathrm{dx}}[\mathrm{~A} \cos (\omega \mathrm{t}-\mathrm{kx})]=
$$

$$
\frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{~A} \omega \cos (\omega \mathrm{t}-\mathrm{kx})]=
$$

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{-\mathrm{A} \cos (\omega \mathrm{t}-\mathrm{kx})}{\omega}\right]=
$$

$$
\frac{\mathrm{d}}{\mathrm{dk}}\left(\frac{\mathrm{c} \cdot \sin (\mathrm{ka} / 2)}{(\mathrm{a} / 2)}\right)=
$$

